Enhancing Stability and Radiation Resilience of Narrowband Optical Filters for High Power and Space Applications

Lablonde Laurent*†1, Catherine Legrand¹, Ronan Le Masson¹, Hugo Boiron¹, Thierry Robin¹, Emmanuel Marin², and Adriana Morana²

 1 Exail – Exail – France

²Université Jean Monnet Saint-Etienne – Université Jean Monnet Saint-Etienne, Université Jean Monnet - Saint-Etienne, Université Jean Monnet - Saint-Etienne : EA3069 – France

Abstract

Phase-shifted ultra-narrowband fiber Bragg gratings (PS-FBGs) exhibit significant sensitivity to optical power, which can impair their performance in demanding environments. In this study, we present the design and material optimization of PS-FBG-based filters capable of maintaining spectral stability up to $100~\mathrm{mW}$ of injected optical power. We further investigate their radiation resilience by subjecting them to X-ray exposure up to $8.5~\mathrm{kGy}(\mathrm{SiO2})$, simulating space-like conditions.

Keywords: narrowband filter, phase, shifted FBG, RIA, fiber optic sensor

^{*}Speaker

[†]Corresponding author: laurent.lablonde@exail.com